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Summary

In this paper the fully nonlinear equilibrium theory of homogeneous

and isotropic, incompressible elastic solids is used to study the elasto-

static field in plane strain on a half-plane deformed by a concentrated

surface load. Under suitable restrictions on the form of the elastic

potential at severe deformations, it is shown that, for materials which

ultimately "harden' in simple shear, the displacement is bounded near the

point of application of the load. This is not the case for materials which

ultimately "softenO in shear. Estimates of the true stress tensor near the

singular point are given. .

x

The results communicated in this paper were obtained in the course of an
Investigation supported in part by Contract N00014-75-C-0196 with the
Office of Naval Research.
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INTRODUCTION

Under certain circumstances, the description of the elastostatic

field furnished by the classical linearized theory of elasticity may be

inadequate, even when the applied loads are small. Such breakdowns

in the linearized theory are ordinarily local in nature and are brought

about, for example, by stress concentrations such as those induced by

holes or cracks in the interior of the loaded solid. The most extreme

examples of problems of this kind involve a singular point in the

elastostatic field--the tip of a crack, for example--near which the dis-

placement gradient Is unbounded. Since the basic approximative assump-

tion underlying the linear theory requires that this gradient be

negligibly small in comparison with unity, it is hardly surprising that

results based on this theory may be in error near such a singular point.

Problems involving large displacement gradients properly fall

within the scope of the finite theory of elasticity. In recent years

there have been several investigations within the framework of the

finite theory of the local structure of the elastostatic field near a

geometrically-induced singular point. Much of this work is summarized

in the review articles (1,2], where references are given. In general,

the analyses of singular problems reviewed in [1,21 are necessarily

local in character; they reveal that the results from linear theory

near the singular point are invariably incorrect quantitatively, and

in some instances may be qualitatively misleading as well. Since it is

often the field near the singular point which is of primary physical

interest, analyses based on finite elasticity are of considerable

significance.
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In the present paper, a further singular problem in elasto-

statics is considered within the scope of the theory of finite

elasticity. This is the plane strain problem of a con-

centrated uniform normal line force applied to an elastic body which,

in the undeformed state, occupies a half-space. Here the singularity

arises because of the character of the applied load, rather than from

the geometry of the undefomed body, as is the case in most singular

problems previously treated within the finite theory (1,2]. The

present analysis aims at the asymptotic determination of the displace-

ments and stresses near the point of application of the load. We deal

with the fully nonlinear equilibrium theory for homogeneous, isotropic

incompressible materials that possess an elastic potential. The

only restriction on this potential is one which,-pertains to its

asymptotic~behavior at large deformations; it is this regime of

deformation which dominates the local field near the singular point.

Again, it is found that the structure of the stress and displacement

fields near the singular point differs from that predicted by the linear

theory.

The only previous works devoted to the effect of nonlinearity on

the elastostatic field near the point of application of a concentrated

force are those of Arutiunian (3] and Atkinson [4]. Both of these

authors retain the assumption of infinitesimal displacement gradients

appropriate to the linearized theory, but replace the constitutive law of

the latter theory by a nonlinear one,
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Section 1 contains a review of some prerequisites from the theory

of finite plane elastostatics for homogeneous, isotropic, incompressible

elastic solids. We also introduce in Section 1 the special class of

such solids underlying the subsequent analysis. Section 2 is devoted

to the formulation, analysis, and discussion of the concentrated force

problem. Only the case of a tensile force is treated in detail.
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1. PRELIMINARIES FROM PLANE FINITE ELASTOSTATICS

In this work we shall be concerned with the analysis, within the

finite theory, of plane elastostatic fields in incompressible, homo-

geneous, and isotropic elastic materials in the absence of body forces.
1

Consider an elastic boay which--In the undeformed state--is an

in-,inite cylinder, and let II denote a plane open cross-section of this

cylinder perpendicular to its generators. Let (x1 ,x2 ) be the coordi-

nates of a generic point in I relative to a fixed two-dimensional

rectangular cartesian coordinate system in the plane of R .

A plane deformation of the body is given by the transformation

ya = (lx 2 ) = x + u,(xlx 2 ) on JI , 1,2 , (1.1)

where y are the components of the positior vector y of the particle in

the deformed body whose position vector in the undeformed configuration

is x; us are the components of the displacement vector u, all with

respect to the rectangular coordinate system. The function y is

required to be twice continuously differentiable on II, and it is fur-

ther required that the mapping x -,. y be one-to-one and that its

inverse R have the same smoothness.

The deformation gradient tensor F associated with y has compon-

ents

FoB" •(1.2)

lFor a discussion of the foundations of finite elasticity see Gurtin [5].

For further reading on plane finite elastostatics of incompressible
materials, see [6].
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Since the material is presumed to be incompressible, the deformation

(1.1) must be locally volume-preserving, whence the Jacobian determin-

ant of the mapping must satisfy

J = det[P ] =l on I (1.3)

Define the right and left two-dimensional Cauchy-Green tensors C and G,

respectively, by

C= F , G = F F (1.4)

These deformation tensors have common fundamental scalar invariants

given by

I1 trC F F = I, say, (1.5)T

12 =det C =J 2 =l

The invariant I is found to obey

I> 2 on 11 (1.6)

Moreover, I = 2 if and only if F = 1, where 1 is the two-dimensional

unit tensor.

Let T be the two-dimensional true (Cauchy) stress tensor regarded

as a function of position on the deformation image ifl*of I. Its compon-

ents T represent forces per unit deformed area. If a is the asso-

ciated nominal (Piola) stress tensor field on I, whose components a

1Repeated subscripts are summed over the range (1,2).
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represent forces per unit undeformed area, one has

T -1
a = T(F )_ (1.7)

For an equilibrium deformation in the absence of body forces, it is

necessary that T satisfy

div T = 0 , T = TT  on 11" (1.8)

It follows from (1.7),(1.8) that

diva = 0 , aFT = FaT  on H (1.9)

Suppose that r is a regular arc in ]I which is mapped onto r* in
TI by the deformation (1.1), and denote by n and n* unit normal vectors

of r and r*, respectively. The true traction vector t and the asso-

ciated nominal traction vector s are given by

s = an on r
(1.10)

t = Tn* on r*

It can be shown that

s = 0 on r if and only if t = 0 on *(1.11)

Moreover, (1.11) continues to hold true for an arc r on the boundary of

Hi if the deformation and nominal stress field are suitably regular on

the closure i of H. This important fact allows the boundary condition

for a traction-free surface r * in the deformed body to be specified on



-7-

the known pre-image r of r* in the undeformed body.

The mechanical response of the homogeneous, isotropic, incompres-

sible material under consideration is governed by the strain energy

density W per unit undeformed volume. For a plane deformation of the

type described above, W depends only on the deformation invariant I:

w = W(I) (1.12)

The stress-deformation relation is

Tl = 2W'(I) F F -pp6 on IT*, (1.13)

ctp p ct8

where 6 as is the Kronecker delta and the scalar field p is an arbitrary

hydrostatic pressure whose presence is necessary because of the con-

straint of incompressibility. Because of the presence of p, the

true stress tensor is not completely determined by the deformation for

an incompressible material. From(l.13), (1.7)it follows that

act = 2W'(I)F - PC~ F on 11, (1.14)

c8 Oycap py

provided ea are the components of the two-dimensional alternator. In

the foregoing, W' denotes the derivative of W with respect to I; we

assume that W is twice continuously differentiable for I L_ 2. It is

further assumed that W vanishes in the undeformed state, so that

W(2) 0 , (1.15)

and that

W'(1) > 0 , I _2 , (1.16)

L_ ,
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so that the Baker-Ericksen inequality is not violated.
1

The linear theory of elastostatic plane strain is recovered from

the finite deformation theory briefly described above by a systematic

linearization with respect to the displacement gradients ua,B. Under

this linearization, the distinction between true and nominal stresses

disappears, and the constitutive law passes over into

T a 2 py -p6aB -- 8 ct - 2 ct8- (1.17)

where

= (, u(1.18)

are the components of the infinitesimal strain tensor, and

= 2W'(2) (1.19)

is the infinitesimal shear modulus. The incompressibility condition

J = 1 linearizes to

=div u = 0. (1.20)

The approximate form of W for infinitesimal deformations is found by

linearization to be

W = y Y 8  "(1.21)

A deformation (1.1) of the form

See C7].
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ya -Ba x a (1.22)

where the B are constants satisfying

det[B ) = 1 (1.23)

is a homogeneous deformation of the incompressible body. Two particu-

lar homogeneous deformations are of special interest: uniaxial stress

and simple shear. For the former one takes

Yl= xi 2 x2 x > 0 , (1.24)

with X constant. From (1.13), one then finds that T = 2 = 0, and,

if p is chosen to be

24

p = 2W'(I) x2 , (1.25)

where

I = X2 + X-2 , (1.26)

one has

T22 = 0 , (1.27)

as well. The only nonvanishing stress component is then found from

(1.13) to be

2 -2
Tl1 = 2W'(I)(X 2 - ) (1.28)

For simple shear, one has the homogeneous deformation

yl = Xi + kx2 Y2 - x2 (1.29)
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where the constant k is the amount of shear. From (1.13) one finds the

relation between the true shear stress T12 and the amount of shear k

to be

T12 = 2W'(I)k , (1.30)

where now

I = 2+k (1.31)

We shall assume throughout that W has the following property:

W(I) = AIn + o(In) as I ® , (1.32)

where A and n are material constants satisfying

A > 0 , n > 1/2 . (1.33)

For an incompressible material satisfying (1.32), one sees from

(1.26),(1.28) that in extreme uniaxial stress (X -a-), one has

T r1 % 2nAX 2 n , X -0. . (1.34)

For severe simple shear (k -- ), one obtains from (1.31),(1.30),(1.32)

I.

T 12 ' 2n A k~n l  k (1.35)

Since n > 1/2, the stress response in uniaxial stress is, by

(1.34), always asymptotically hardening as A +w, in the sense that

dT11/dA is increasing with increasing X. In shear, the stress re-

sponse of (1.35) is hardening as k - for those materials with n > 1,



softening for < n < 1, and asymptotically linear if n=. The

asymptotic forms of the stress response curves in uniaxial stress and

simple shear for materials satisfying (1.32),(1.33) are shown in Figure 1.

If one were to permit n < 1/2 in (1.32) one would find that the

field equations of the equilibrium theory would cease to be an elliptic

system at sufficiently severe deformations; see [6].

Before proceeding to the specific problems to be discussed, it is

useful to take note of an implication of the field equations (1.3),

(1.9), (1.14). One can show that det F 1= 1 implies that

E y C ap F -= 0 on IT . (1.36)

Substitution from (1.14) into the equilibrium equations (1.9) then

gives, with the help of (1.36), the equation

[2W'(I) F )],B = Po Cay Cap Fpy on ii (1.37)

If one multiplies (1.37) by FoL, makes use of the fact that det F 1

as well as of the definitions (1.4),,(1.5),l one finds that

Vp = 2W'(1) FTV2y + 2W"(I) FTF VI on II . (1.38)

Wewill find this form of the equilibrium equations helpful in

the sequel.



-12-

2. THE HALF-PLANE DEFORMED BY A CONCENTRATED FORCE

A. Formulation of the Problem

We consider the case in which the open cross-section 1! of the un-

deformed body is the half-plane x1 > 0, - < x2 < G, and we denote by
6

the closure of IT with the origin deleted. Given the plane strain

elastic potential W(I) of the homogeneous, isotropic, incompressible

material to be considered, we seek a deformation y, = Y(x 1 'x 2 ) on
0

11 such that the nominal stresses a. generated by the deformation

through (1.2)-(1.5)and (1.14) conform to the equation of equilibrium

(1.9). We further assume that the free-surface conditions

711(O,x2 ) - a21(Ox2) = 0 , Ix21 > 0 (2.1)

hold and we require that , as Ixi -- , the true stress field

should tend to zero:

T (xl,x 0 as 1xi , x 0. (2.2)

Further, we impose the requirement that

a =(r ) as r O, uniformly in 8, - 1< , (2.3)

where r,e are polar coordinates at the origin: x1 = r cos 6, x2  r sin e.

We next prescribe that

wi/2

f a nBrd = F 6 1  , r > 0 (2.4)

t/2
corresponding to a concentrated force of magnitude JFI acting on the
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boundary of the deformed body in a direction parallel to the xl1-axis.

We shall limit our attention to the case F > 0, so that the force is

in the negative xl-direction and is therefore tensile. In (2.4), n is

the unit vector in the radial direction. The compressive case could be

treated by a similar analysis.

We finally assume the elastostatic field to be symmetric about

the x1-axis. This in particular rules out a concentrated moment at

the origin; symmetry also implies that (2.4) holds automatically

for a = 2.

B. The Elastostatic Field near the Origin--Lowest Order Asymptotic

Analysis

We now assume that the elastic potential W(I) satisfies (1.32),

(1.33), and we investigate the local structure of the field near the

point of application of the force. We begin by making the Ansatz

y = r Va(6) + o(ra) as r- O, (no sum on a) , (2.5)

uniformly for -7r/2 < e <e i/2, where mI and m2 are constants restricted

by

m 1< , m2 > 1 (2.6)l

and neither of the unknown functions v (e) cc([-,joi) vanish identi-

cally.2 Moreover, in view of the prevailing symmetry one has

lOne can show systematically that (2.6) are necessary when the applied force

is tensile. They correspond physically to the fact that, along the line of

symmetry e-O, the principal stretch Xl in the x1 -dlrection is large, while

12 is small. The hypothesis (2.6) must be altered when the load is compres-

sive. Note that we do not assume m1 20.

2We actually need the slightly stronger assumption that vl(e) ( 0 and

v has at most a finite number of zeros in [-. , ].v2
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vl (-e) = v1(0) , v2 (-0) = -v2 (e) (2.7)

It is assumed that (2.5) may be formally differentiated twice.

From (2.5) one obtains for the deformation gradient tensor F the

local asymptotic representation

m-l

F 4 fO r as r - 0 (no sum on a) , (2.8)

provided

= m,,vC(B) CO(e) + Cy Cy(0) G(e) (no sum on a) (2.9)fc c

Here the dot denotes differentiation with respect to e and we have

introduced the abbreviations

cl(e) = cos e , c2(e) sin e . (2.10)

From (2.8),(2.9) there follows

J = det F = (mlVlY 2 - m2 v2 vl ) r 1 2

~m1 +m2 2 2

+o(r ) , r- 0 (2.11)

Since incompressibility requires J - 1, we must have

m1 +m 2 -2 < 0 , (2.12)

and either

mIv 1 2 - m2v2 1 = 0 if m + m2 < 2 , (2.13)

or
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ml 12 - m2v2vI = 1 if ml +m2 = 2 (2.14)

From (1.5),(2.8),(2.9) we obtain

2(m1-I)
I r G(e) as r - 0 (2.15)

where

G(O) =2(e + in2 v,(e) .(2.16)

In view of the assumption (2.6) concerning m1, one has from (2.15) that

I as r - 0. The material assumption (1.32) then yields

W(I) " AGn(e) r2n(m1I) a I

W'I A~-16)r2(n-l)(m1-I1)  as r - 0•

2(n-2)(m -1)

W"(1) n(n-l) AGn- 2 (e) r (2.17)

We now recall the field equations in the form (1.38); with the help of

(2.17),(2.8),(2.9),(2.6),(2.15) we find from (1.38) that

2(ml-l)n- 1
"r 2nAmlvl(0) Z(e) r (2.18)

and

and 2 2nA 1l(O) Z(e) r2 (m 1 )n -1 (2.19)
r 30

as r 0 , where
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Z(e) =Gn- (e) {G(e)[V 1(O)+ ml vi(8)]

+ (n-l)[6(e) ,(e) + 2ml(n-l) G(e) v1(e)]l (2.20)

Compatibility of (2.18),(2.19) requires that vand Z satisfy

+ 1 l - (2n-1)(m 1-1)] l Z = 0 . (2.21)

Once (2.21) is fulfilled, one finds from either (2.18) or (2.19) that

p m AI 1 6 ~)rnm~ as r -0 -(2.22)

We next consider the boundary conditions (2.1). Because of (1.14)

these are

2WI(I)F 11 - pF 22  0

at 6 7r, r >O0 (2.23)
2W'(I)F2  + pF1  0 J

Multiplying the first of (2.23) by F11  the second by F 21, adding the

results, and using (1.3). we obtain

p =2W(I(F~+F 1)at e 9~ r > 0 .(2.24)

On the other hand, eliminating p between the two equations (2.23) yields,

in view of (1.16),

F1F12+ F 21 F22 = 0 at e ±- r > 0 .(2.25)

Making use of (2.17),(2.8). and (2.9), we obtain from (2.24) the result
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p' 2nAGn' ) (e) r2n (m as r * 0, S (2.26)

Comparing (2.22) at 6 - ±7r and (2.26) leads to

ml

2nl - 1 V, (:t 1 ±) . (2.27)

The second boundary condition (2.25), with the help of (2.8),(2.9),(2.15)

gives

Vl(±2) Vl(±7) - 0 . (2.28)

We now show that the two boundary conditions (2.27) and (2.28),

together with the differential equation (2.21), imply that

v( - 1 -) = 0 (2.29)

12

and

Z(± 2) = 0 . (2.30)

We first establish (2.30) by showing that the hypothesis Z(w/2) # 0 leads

to a contradiction. If Z(w/2) # 0, there is an interval eo, I/2].
0

e < w/2, on which Z(B) vanishes nowhere, by continuity. Equation (2.21)

can then be integrated on (e ,w/2] to give

M.
Cl~ ~(2n-1)(m1- 1 1I

v1(e)= , C) 0 e<<- , (2.31)

where C is a constant. If C - 0, then v1(B) 0 on [eo,ir/2], whence by

(2.16),(2.20), Z(e) B 0 on [0o ,0f/21, contradicting the hypothesis

Z(ir/2) # 0. Thus C # 0, and so by (2.31), v1 (e) # 0 for all
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e C [ 0 ,/2]. In particular, vl(w/2) 0 0, so that by (2.28), 1(w/2)=0.

Thus (2.27) has been violated unless mI  0. But if mI = 0 we conclude

from (2.21) that v1 
= constant on [e ,r/2], which leads via (2.20),(2.16)

to Z S 0 on [e ,Ir/2], again contradicting the hypothesis. Thus indeed,

Z(n/2) = 0, and, since Z(e) is even, (2.30) holds. From (2.27) and

(2.16) it then follows that (2.29) holds as well.

An argument similar to that just used to establish (2.30) can now

be constructed to show that (2.21),(2.30) imply that

Z(6) =- 0 on [-7r/2,7r/2] (2.32)

From (2.32),(2.20),(2.29) we then obtain a nonlinear eigenvalue problem

for ml , v 1 ( e ) :

[Gn 1([) +1 (e) +[mp+2m1 (m1 - 1 )(n - 1 ) ] Gnl(e) v (e) = 0

-7/2 <e < /2  (2.33)

= 0. (2.34)

The differential equation (2.33) is identical with one which has arisen in

the local analysis of the elastostostatic field near the tip of a crack;

see [8], ['9 ],C 10, [11 ]

In view of (2.32), we have from (2.22) that

p =o(r 2n (m '- )) as r - 0 . (2.35)

Suppose that mI = 0. Then (2.33),(2.34) imply that v,(6)-R constant

and the leading term r v1(e) in the expansion of y, near r - 0 may be
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viewed as a rigid body translation parallel to the x1-axis. Since the

boundary value problem determines the elastostatic field at best to

within an arbitrary translation of this kind, we shall discard the case

mI = 0 and assume henceforth that, in addition to (2.6),

mI  0 , (2.36)

also holds.

It is now possible to prove that (2.36),(2.6) and the assumptions

made concerning v1 and v2 imply that (2.13) leads to the contradiction

v =0. Thus (2.14) must hold, and thus

m1 + M2 = 2 (2.37)

From (1.14) we have

=Is = 2W'(1) Fis - p 'By F 2y (2.38)

Making use of (2.17),(2.8),(2.9),(2.35)-(2.38) we can show that the first

term on the right in (2.38) dominates the second, and hence that

als , 2nA mIGn(e) f i(e) r )(m1-1) as r+ 0 . (2.39)

From (2.3) we conclude that (2n-l)(m1-l) >_ -1. In order to use (2.4)

with a - 1, we first observe that nB = cB (see (2.10)), and from. (2.39),

(2.9) that
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if/2 ir/2 (2n-l)(ml-I) + I

J a10n8 r d6 " 2nmlA J Gn-(8) v,(e) de r

-vr/2 -ir/2 as r 0 . (2.40)

It follows that

=m - 1) < 1 n 1. (2.41)1

From the boundary value problem (2.33),(2.34) with ml given by (2.41), one

finds

vl(e) = k, = constant , -r/2 < 65 . 7r/2 , n 1 1 . (2.42)

Since (2.37) holds, we have

2n T

m = 2-i = - >1 , n 1 (2.43)

With the help of (2.42) and the fact that v2 (e) is odd, we can now deter-

mine v2 from (2.14) as

v2(e 8= k28 , -7/2 <_e <7/2 , n #1 . (2.44)

Finally, we return to (2.4) with a = I to determine k in terms of F.

Using (2.40)-(2.42) and (2.16), we obtain

2fl-l F ~ (.5
C(mlk 1 ) I (m1k1 ) a 2nn A n (2.45)

1Recall that m1 = 0 has been excluded.

i

__ m I.



-21-

and hence

k= 2n - I nI n (2.46)

Thus, for n 1 1, we have determined the first terms (2.5) in the ap-

proximation to the deformation near r = 0 as follows:

Yl , l r75-T

2n as r-0, -7/2 </0 <_/2 , n # 1
2n-l1 I 2n-y 2 n~- 1 IrI n  e (2.47)-'2 2(n-1

with k related to F through (2.46). The deformation image of the bound-

ary 0 = ±?r/2 of the half-plane is then given in first approximation by

2n-I 1 F L)/n l
Yl T 4nA ' Y2 j+0, n1 .1 (2.48)

We note that if n > 1, so that the material is asymptotically hardening

in simple shear [see (1.35) and Figure 1], the displacement under the

load is finite, while this is not the case for softening materials (n < 1).

A sketch of the deformed surface based on (2.48) is given in Figure 2.

The case n = 1 (a material which is asymptotically linear in shear

(Figure 1)) has been excluded in the results (2.47),(2.48). To treat

this case, it is necessary to replace the Ansatz (2.5), (2.6) by

yj (log r) vl(e) ,

Yl2 (oe r v(3) , > as r - 0 . (2.49)
y 2 r - Vz(e) ' m2 >lI
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The special nature of the case n =I arises because mI =0

and mI1 = 2(n-l)/(2n-lare both eigenvalues (adjacent ones in fact) of

the problem (2.33),(2.34). They are distinct as long as n $ 1, but

coalesce1 as n 1 1. This coalescence may be used to motivate the form

of the new Ansatz (2.49) for n = 1; we omit the details. One finds from

(2.49) that m2 = 2, v1(e) = k, = constant, v2 (e) = (l/kl)e , where

k= F/2Aw. The counterparts of (2.47) are

SNF 1 og r ' as r - O, -n/2 <_e <7r/2 , n=l,
Y2 A T-2 J (2.50)

while the deformed boundary is now given approximately by

F og F y2 1y1  F log(-l. ) as 0y21 - o , n = 1 (2.51)
Air

The displacement is unbounded near the point of application of the load,

as it is for the softening material (n < 1).

Although the nominal stresses 011,012 are fully determined to lead-

ing order as r - 0 at this stage, the fact that, as yet, only the weak

estimate (2.35) is available for the hydrostatic pressure p makes the

asymptotic determination of a22,721 impossible without higher order

considerations. In view of the relationship (1.7) between the nominal

stresses c. and the true stresses T,, the full asymptotic determination

IA similar but more complicated coalescence of eigenvalues arises in

crack problems, see [8], [9).

-. - - I
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of the latter must also await such higher order results.

C. Higher-Order Asymptotic Considerations

For the present, suppose that n 0 1 and replace (2.5) by the two-

term asymptotic representations
mI  sI

Y 1 kl wl (e)r ,
as r - 0 , -/2 <0 e_. /2 , (2.52)

Y2 " k2 r + w2(e)r 2

with the stipulation that

s > mI , s 2 >m 2 , w cC 2([-1,]) , w 10 on [-1 1

(2.53)

and that wl ,w2 have the respective parity of vI and v2. Equations (1.2),

(2.52) lead to the following representation for the components of the

deformation gradient tensor:

m -i s -i s -1
F = f r +ga r +o(r ) , (no sum on a), (2.54)

provided f is given by (2.9) and

gas(e) = Sac () w L(0) + Eyacy(e) wa(e) (no sum on a). (2.55)

The asymptotic representation of the deformation invariant I depends on

the value of si. One can show after some calculation that necessarily

mI1 < s < 4-3m 1 (2.56)
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Then the asymptotic representation for I is

2 2 2(m1-l) m 1 +s-2r+ 2mI s1v Iw1 r (2.57)

Equations (2.17),(2.54),(2.55),(2.9),(2.57) and (1.38) yield

'P- 2nA G n-I Y(e) rs '3

ar1

r 0 ,(2.58)

1 @. = o(r l 3

r ae

where

Y(B) = W11 +KWI 1 (.9
+ I~w - 2(-1)](2.59)

K = s1E(2n-1)s I - 20-03

and

G1 (e) = mlv 1(0) = mtak1  (2.60)

On the other hand, the boundary conditions (2.23) lead to

1) 1) 2(s1- 1"ml
wl (± ) = 0 , p(r,_j.) ". o(r 1 1 ). (2.61)

Integrate the first of (2.58) with respect to r to get

2n A G2 n - l sI-2P 1 1 Y(e) r , (s l2) (2.62)

Comparing (2.62) with the second of (2.61), one deduces that

Y( ± 1) - 0 .(2.63)

The compatability of (2.58),(2.62) together with (2.63) then gives
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Y(e) 0 on [-ir/2,r'/2] . (2.64)

Equations (2.59) and the first of (2.61) imply

wI(e) = B cos VKe , B constant, - 7/2 <_ 0 < 7r/ 2  (2.65)

I - jIT , j = 0,±1,±2,-. . (2.66)

The second of (2.59) and (2.66) imply that

s 2(n-l) ±-1[2(n-l)J
Z + 16(2n-1) j2

2(2n-1) 
j  -+l,-2, .. (2.67)

One seeks the smallest value of s1 satisfying (2.56). This occurs for

j = 1, so that

s, J , 4'

= n-I+ + .n (2.68)

The asymptotic results for the spatial coordinates deduced this far

may be summarized as follows:

yl k, r2- + B cos 20 nr 1 , (2.69)

2n
Y2 k 2 e r 2n-1 n , (2.70)

p "o(rs 1 , n > 1/2 (2.71)

The case n = 1 is treated at the end. Substituting from (2.54) into (1.3),

using (2.11),(2.14) gives that
~5+m 2 -2

J I I + (k2S 1w - m2k2 i1 ) r 1 2

Sk2 + mr -
2  isr1 + S22+m 1klW 2 rs + O(r )(2.72)
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A simple analysis gives

s2 = = +m m s + 2 (2.73)2 1 2 1 1 2n-1 2.3

and
s m ' " wl (2.74)

km 1W

which on integration, using (2.65), yields

w B {m-ecs2l(m2+s) sin2e} (2.75)
(m k1)

2

For n =1, we can similarly show that

2
Yl - k1 log r + B cos 2e , n=l (2.76)

In an effort to find a strong estimate for the pressure field, we now as-

sume the following three-termn asymptotic representation for the deforma-

tion: m s t

ya 1 v.r a + w r + z(, r a (no sum on a), (2.77)

with the stipulation that

t > S 2  2 > m2  , (2.78)

and z1 ,z2 are functions possessing derivatives of second order on

[-ir/2,ir/2], which fail to vanish identically and have the same parity as

v1 and v2.

For n > 1, it can be shown that

Zl(0) - D cos 2/E- e + k3(Ule + 112) , (2.79)
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and

S2m2 - 1 = 2(n+1 (2.80)
1 2 - I 2n-l

where
( m

2 
+ 2 ji) k3 ! "
S 2 2 1 < /t, < 2

2Y ' 1 sin A-1l 7r

11= 8 1 [(2- 3m1)(m 2 - m1 ) 4m2 I m2

(2.81)

1 [v - 2(m1 + 1')]U 2 =4t 1

v (2-3m1 )[ 1 - (, 2 -2) ]2 (r2
011 (m2 - - I'

and we arrive at a strong estimate for the pressure field,

m2 2(2-n)_fml T[ 2n-I
p- 2nAG2(n-1) k2 {(m 2 _m1 ) 2-2 )2]+1} r , n > 1 (2.82)

For n < 1, we can show that

z (e) = B2 (I1 cos 4e - j 2 ) (2.83)

and

t1 = 2s1 -m , (2.84)

where

A =' (2n-l)tlSlk2  = (n-l)slk2  (2.85)

but for the pressure field we have only the weak estimate

p UOr 1 -im1 2 (2.86)
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At this stage we can determine z2,t2 from condition (1.3); however,

it is not necessary to record the results here.

To find a strong estimate for the pressure field for n < I we assume

the deformation admits the representation

m s t
y % vr a + wCr a + z ar + q ,r L (no sum on a), (2.87)

with the stipulation that

! i > tl > Sl > ml 9 1 > t2 > S2 > M2

q£ P C2 (-w/2,w/2]) . q 0 on [-ir/2,w/2]

We can now show that

I I= 2m2 - ml , 7/12 < n < 1 , (2.88)

and that ql(e) is given by the value of z1 (e) in (2.79). Thus, we can see

a trade in dominance between the third and fourth term of (2.87), for a = 1,

as n passes through n = 1. Condition (1.3) is again used to determine k 2

and q2. For 7/12 < n < 1/2, equation (2.82) is found to give a strong

estimate for the pressure field. The value n = 7/12 is a transition point

for the pressure field. A strong estimate for n in the range (1/2,7/12)

requires much further analysis.

At this point, we will record the results for n = 1.

2 33 4yl " k1 1ogr+ Bcos2e r + -§k2 cos4e r log r

+ [Ecos48 -k (36sin4e+4 2 + 2 5 )] , 

WM. . . . .
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Y2 k2 e r , (2.89)

22 2 J
p Ak2 (40

2  2 + 2) r
2

where B and E are constants.

D. Summary of Results for Deformation and Stresses

The asymptotic results for the spatial coordinates and pressure field

may be summarized as follows:

2n1i 2 A s1-m1  1 7
Y" k, r +B cos20r +B (,cos4e- i2 )r , <n<12

2n) s 2 2sI -m1
Yl  k r +Bcos2e r +B ( jicos48- P 2)r

3 22)]r4-3m7
+[Dcos2VT.O +k 3( 2 r 1 -L<n<l2 r

Tn- Sl13 4-3m,

Yl kl +B cos20 r + EDcos2 t/.l8+ k2(Il2+2)]r , n >111 1 2  P2

2n 2s i+2n''-
Y2 k2 8 r Z T + w2 (e) r I , n 1

p -k- 3]n( 2 I} r 7<n<-e n # 1
(2n-1) '2'

(2.90)

where k1,k2 are given in (2.44),(2.46); w2 (e) in (2.75); sI and tI in
(2.68),(2.80); D, PI' P2 In (2.81); and ^lj in (2.85). B, a constant, is

left undetermined by the local analysis.

We now turn to the asymptotic determination of the actual stresses

T s From (1.13),(2.17),(2.8),(2.9),(2.41)-(2.44), and (2.35), one finds
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-2n

'III' (m k) r2n1  , n # 1 , (2.91)
-2 n-1

T12 21 "i (m2k2 ) r 8, n # 1 , (2.92)

and using (282), i

k e2 .- () , n 1 (2.93)

The true stresses here are referred to the material polar coordinates

(r,6). The stress component TI,, which is of primary physical interest,

becomes unbounded at the origin for all admissible values of the hardening

parameter, the singularity becoming more severe with decreasing values of

n, and for the range of n under consideration is always stronger than that

predicted by the linear theory. The other normal stress component T22 re-

mains bounded for n < 2, but for n > 2 it becomes unbounded, while the

actual shearing stress TI2 is bounded for n < 1, and becomes unbounded at

the origin for hardening materials (n > 1). In both stresses '22-'12 the

severity of the singularity increases with increasing values of n; however,

the order of the singularity is less than that predicted by the linear

theory for all allowable n.

For n = 1 we have, in summary, that
Y N kllg r + Bcos 2e r2 + R k2cos 46 r41ogr

k225
+ [Ecos 4e + (6esin4e + 48 + 72-)) (

2 2r4 (.4

Y2 k2 er + 2k2 B (ecos e - sine) r



-31-

p Ak2(4e 2  w 2+2) r 22

F
Here, k = 1/k2 = , while B and E are constant, undetermined by the

local analysis. The components of the actual stress tensor are, using

(1.13), (2.17), (2.8), (2.9), (2.50), and (2.35),

Tll Ekl r t 22 Fi2k38 2+(1 ) } r

(2.95)
F

r12 - t21 ' % (2k2 )

At this stage, a comparison of the results given in (2.94),(2.95)

with those predlcced by the classical linear theory reveals the presence

of a 1g r singularity in the dominant term of the deformation in the x1

direction in both cases. This is the only similarity! According to

linear theory all the components of the stress tensor possess a 1/r singu-

larity at the origin, but from (2.95) we see the stress component T11

is more singular, while the other components are, in fact, bounded there.
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Power-law material response curves for extreme uniaxial stress.
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Power-law material response curves for severe simple shear.
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x 2 x

-<n<I (SOFTENING MATERIAL)
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n>I (HARDENING MATERIAL)

Local image of half-plane deformed by a tensile concentrated
force.

FIGURE 2
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